在之前介绍的线性回归模型中,有一个隐含的假设是自变量均为连续变量,但实际上自变量有时候是分类变量,类似于方差分析中的因素,这种分类自变量在回归分析中,也默认作为连续变量使用,这就会产生一个问题,如果是无序分类变量,那么各类别间没有高低之分,每变化一个单位,对于因变量的影响是相同的,无法分析当中的趋势 ...
分类:
其他好文 时间:
2016-07-02 18:58:19
阅读次数:
205
标准的线性回归模型的假设之一是因变量方差齐性,即因变量或残差的方差不随自身预测值或其他自变量的值变化而变化。但是有时候,这种情况会被违反,称为异方差性,比如因变量为储蓄额,自变量为家庭收入,显然高收入家庭由于有更多的可支配收入,因此储蓄额差异较大,而低收入家庭由于没有过多的选择余地,因此储蓄会比较有 ...
分类:
其他好文 时间:
2016-07-01 18:13:43
阅读次数:
1019
在SPSS非线性回归过程中,我们讲到了损失函数按钮可以自定义损失函数,但是还有一个约束按钮没有讲到,该按钮的功能是对自 定义的损失函数的参数设定条件,这些条件通常是由逻辑表达式组成,这就使得损失函数具有一定的判断能力。 该功能的主要作用是进行分段回归,有些时候,变量间的关系并非一成不变,而是具有某种 ...
分类:
其他好文 时间:
2016-06-29 20:35:41
阅读次数:
336
线性回归最常用的是以最小二乘法作为拟合方法,但是该方法比较容易受到强影响点的影响,因此我们在拟合线性回归模型时,也将强影响点作为要考虑的条件。对于强影响点,在无法更正或删除的情况下,需要改用更稳健的拟合方法,最小一乘法就是解决此类问题的方法。最小二乘法由于采用的是残差平方和,而强影响点的残差通常会比 ...
分类:
其他好文 时间:
2016-06-27 23:07:14
阅读次数:
229
线性回归的首要满足条件是因变量与自变量之间呈线性关系,之后的拟合算法也是基于此,但是如果碰到因变量与自变量呈非线性关系的话,就需要使用非线性回归进行分析。SPSS中的非线性回归有两个过程可以调用,一个是分析—回归—曲线估计,另一个是分析—回归—非线性,两种过程的思路不同,这也是非线性回归的两种分析方 ...
分类:
其他好文 时间:
2016-06-27 21:33:34
阅读次数:
4702
只有一个自变量和因变量的线性回归称为简单线性回归,但是实际上,这样单纯的关系在现实世界中几乎不存在,万事万物都是互相联系的,一个问题的产生必定多种因素共同作用的结果。 对于有多个自变量和一个因变量的线性回归称为多重线性回归,有的资料上称为多元线性回归,但我认为多元的意思应该是真的因变量而非自变量的, ...
分类:
其他好文 时间:
2016-06-26 23:43:22
阅读次数:
233
和相关分析一样,回归分析也可以描述两个变量间的关系,但二者也有所区别,相关分析可以通过相关系数大小描述变量间的紧密程度,而回归分析更进一步,不仅可以描述变量间的紧密程度,还可以定量的描述当一个变量变化时,对另一个变量的影响程度,这是相关分析无法做到的,正因为如此,回归分析更多用来预测和控制变量值,但 ...
分类:
其他好文 时间:
2016-06-26 00:25:32
阅读次数:
158
我们在实际工作中为了准确的分析问题,经常会收集多个变量,这些变量之前存在相互影响,导致分析的因素混杂,影响分析结果,为了获得准确的实验效应,我们需要控制其中一些影响因变量的变量,这些变量称为就协变量,带有协变量的方差分析称为协方差分析。协方差分析的基本思想为:在进行方差分析之前,先用直线回归找出各组 ...
分类:
其他好文 时间:
2016-06-19 21:25:27
阅读次数:
374
t检验和方差分析主要针对于连续变量,秩和检验主要针对有序分类变量,而卡方检验主要针对无序分类变量(也可以用于连续变量,但需要做离散化处理),用途同样非常广泛,基于卡方统计量也衍生出来很多统计方法。 卡方统计量是基于卡方分布的一种检验方法,根据频数值来构造统计量,是一种非参数检验方法。SPSS中在交叉 ...
分类:
其他好文 时间:
2016-06-18 11:29:15
阅读次数:
220
随着大数据分析时代的到来,全方位的数据分析能力已经成为当今企业不可或缺的竞争力。企业全方位的数据分析能力根据分析的级别和功能领域的划分通常包括了:常规报表、即席查询、多维分析(又称为钻取或者OLAP)、预警、统计分析、预测、预测型建模(预测性predictive模型)和..
分类:
其他好文 时间:
2016-06-16 11:48:50
阅读次数:
188