1、介绍 ?决策树(decision tree)是一种有监督的机器学习算法,是一个分类算法。在给定训练集的条件下,生成一个自顶而下的决策树,树的根为起点,树的叶子为样本的分类,从根到叶子的路径就是一个样本进行分类的过程。 ?下图为一个决策树的例子,见http://zh.wikipedia.org/w...
分类:
其他好文 时间:
2014-06-25 13:13:16
阅读次数:
172
1、介绍 ?决策树(decision tree)是一种有监督的机器学习算法,是一个分类算法。在给定训练集的条件下,生成一个自顶而下的决策树,树的根为起点,树的叶子为样本的分类,从根到叶子的路径就是一个样本进行分类的过程。 ?下图为一个决策树的例子,见http://zh.wikipedia.org/w...
分类:
其他好文 时间:
2014-06-17 13:17:44
阅读次数:
281
rcode = CR_set_signoff_decision(signoffs[i],CR_approve_decision,decision_comment);if(rcode!=ITK_ok){ goto CLEANUP;}printf("set approve decision suc...
分类:
其他好文 时间:
2014-06-15 07:00:35
阅读次数:
346
(转载请注明出处:http://blog.csdn.net/buptgshengod)1.背景
接着上一节说,没看到请先看一下上一节关于数据集的划分数据集划分。如今我们得到了每一个特征值得信息熵增益,我们依照信息熵增益的从大到校的顺序,安排排列为二叉树的节点。数据集和二叉树的图见下。(二叉树的图是....
分类:
编程语言 时间:
2014-06-03 07:23:48
阅读次数:
325
(转载请注明出处:http://blog.csdn.net/buptgshengod)
1.背景
上一节学习支持向量机,感觉公式都太难理解了,弄得我有点头大。不过这一章的Adaboost线比较起来就容易得多。Adaboost是用元算法的思想进行分类的。什么事元算法的思想呢?就是根据数据集的不同的特征在决定结果时所占的比重来划分数据集。就是要对每个特征值都构建决策树,并且赋予他们不同的...
分类:
编程语言 时间:
2014-05-07 06:48:25
阅读次数:
569
阿弥陀佛,好久没写文章,实在是受不了了,特来填坑,最近实习了(ting)解(shuo)到(le)很多工业界常用的算法,诸如GBDT,CRF,topic model的一些算法等,也看了不少东西,有时间可以详细写一下,而至于实现那真的是没时间没心情再做了,等回学校了再说吧。今天我们要说的就是GBDT(Gradient Boosting Decision Tree)...
分类:
其他好文 时间:
2014-05-03 16:14:46
阅读次数:
904