码迷,mamicode.com
首页 >  
搜索关键字:线性方程组    ( 263个结果
POJ 2891 Strange Way to Express Integers【扩展欧几里德】【模线性方程组】
求解方程组 X%m1=r1 X%m2=r2 .... X%mn=rn 首先看下两个式子的情况 X%m1=r1 X%m2=r2 联立可得 m1*x+m2*y=r2-r1 用ex_gcd求得一个特解x' 得到X=x'*m1+r2 X的通解X'=X+k*LCM(m1,m2) 上式可化为:X'%LCM(m1 ...
分类:其他好文   时间:2016-07-30 16:29:39    阅读次数:90
线性代数 -- Linear Algebra with Applications
@、如果线性方程组无解,则称该方程组是不相容的(inconsistent)。 @、如果线性方程组至少存在一个解,则称该方程组是相容的(consistent)。 @、等价方程组(equivalent systems)。 @、定义:若两个含有相同变量的方程组具有相同的解集,则称它们是等价的(equiva ...
分类:移动开发   时间:2016-07-22 01:00:24    阅读次数:289
《训练指南》——7.20
基于我们在《Linear Algebra and Its Application》一书中对解线性方程组的高斯消元法的学习,这里给出线性方程组有唯一解的编程实现。 参考代码如下: ...
分类:其他好文   时间:2016-07-20 21:13:36    阅读次数:133
《Linear Algebra and Its Applications》-矩阵运算
可以说第一章《Linear Algebra and Its Applications》着重介绍了线性代数中几个核心概念(向量、矩阵和线性方程组)之间的关系(方程的同解性),那么下面这本书开始分别介绍这几个核心概念,比如从这篇文章开始,会简单的介绍矩阵方面的内容。 首先对于我们定义的计算工具(矩阵), ...
分类:移动开发   时间:2016-06-29 06:36:49    阅读次数:213
(转)网上摘抄:计算数学研究方向及网上资料
计算数学目的为物理学和工程学作计算。主要研究方向包括: 数值泛函分析;连续计算复杂性理论;数值偏微与有限元;非线性数值代数及复动力系统; 非线性方程组的数值解法;数值逼近论;计算机模拟与信息处理等;工程问题数学建模与计算等等。 目前发展最好的方向已经与应用数学的CAGD 方向合二为一。现在最热的方向 ...
分类:其他好文   时间:2016-06-27 10:22:07    阅读次数:179
《Linear Algebra and Its Application》-线性方程组的解
线性方程组的解: 通过先前文章对矩阵方程、线性方程组和向量方程这三种方程的通解性的介绍,现在我们就可以比较简便的表达一个线性方程组了。即有如下形式: Ax = b。其中A是m x n的矩阵,对应线性方程组的系数矩阵,而x是R^n的一个向量,记录了n个未知量,b则是线性方程组等式右边的尝试,在这里本质 ...
分类:移动开发   时间:2016-06-24 20:33:17    阅读次数:149
《Linear Algebra and Its Applications》- 线性方程组
同微分方程一样,线性代数也可以称得上是一门描述自然的语言,它在众多自然科学、经济学有着广阔的建模背景,这里笔者学识有限暂且不列举了,那么这片文章来简单的讨论一个问题——线性方程组。 首先从我们中学阶段就很熟系的二元一次方程组,我们采用换元(其实就是高斯消元)的方法。但是现在我们需要讨论更加一般的情况 ...
分类:移动开发   时间:2016-06-22 00:04:18    阅读次数:296
高斯消元基础知识介绍
转载自:高斯消元法 高斯消元法(Gauss Elimination) 分析 & 题解 & 模板——czyuan原创 高斯消元法,是线性代数中的一个算法,可用来求解线性方程组,并可以求出矩阵的秩,以及求出可逆方阵的逆矩阵。高斯消元法的原理是:若用初等行变换将增广矩阵 化为 ,则AX = B与CX = ...
分类:其他好文   时间:2016-06-15 12:34:45    阅读次数:204
六月学习记录
6月1日 1.复习: 欧几里德算法和扩展欧几里德算法 Eratosthenes筛法 2.学习: 模线性方程组 除法取模(乘法逆元) 置换,Burnside引理,Polya定理 费马小定理 3.做题: 1004: [HNOI2008]Cards 1004: [HNOI2008]Cards ...
分类:其他好文   时间:2016-06-01 19:30:55    阅读次数:225
网格弹簧质点系统模拟(Spring-Mass System by Fast Method)
弹簧质点模型的求解方法包括显式欧拉积分和隐式欧拉积分等方法,其中显式欧拉积分求解快速,但积分步长小,两个可视帧之间需要多次积分,而隐式欧拉积分则需要求解线性方程组,但其稳定性好,能够取较大的积分步长。[Liu et al. 2007]文章提出了一种弹簧质点模型的求解方法,它将隐式欧拉积分方法转变为求 ...
分类:编程语言   时间:2016-05-24 10:23:49    阅读次数:207
263条   上一页 1 ... 15 16 17 18 19 ... 27 下一页
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!